Geological Magazine

www.cambridge.org/geo

Original Article

Cite this article: Mandal S, Singh A, Banerjee S, Uddandam P, and Negi RS. Linking the impact of seismicity on palaeogeographic evolution and sedimentary architecture: A case study from Middle Jurassic succession of Spiti Himalaya. *Geological Magazine* https://doi.org/ 10.1017/S0016756823000778

Received: 17 July 2023 Revised: 20 November 2023 Accepted: 21 November 2023

Keywords:

Seismite; Spiti Himalaya; palaeogeographic shift; basin subsidence; sedimentary architecture

Corresponding author:

Sabyasachi Mandal; Emails: sabyajugeo@gmail.com/ sabyasachi.mandal@bsip.res.in

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons.org/ticenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Linking the impact of seismicity on palaeogeographic evolution and sedimentary architecture: A case study from Middle Jurassic succession of Spiti Himalaya

Sabyasachi Mandal¹⁽ⁱ⁾, Abha Singh¹, Santanu Banerjee²⁽ⁱ⁾, Premraj Uddandam¹ and Ranveer Singh Negi¹

¹Birbal Sahni Institute of Palaeosciences, Lucknow, India and ²Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai, India

Abstract

The traces left by earthquakes in the unlithified sediments, recorded as soft-sediment deformation structures (SSDS), are well reconstructed as palaeo-seismic signals, while the origin of SSDS, seismic vs. Aseismic, is challenging. The present study discusses the origin of SSDS and its implications on palaeoceanography and sediment architecture. In the Middle Jurassic succession of Spiti Himalayan region in India, the topmost part of the Ferruginous Oolitic Formation (FOF) consists of four layers of SSDS and is underlain by the lower member of the Spiti Formation (SF). The sedimentary facies analysis documents the palaeogeographic shift from the middle shelf (carbonate-shale repository: FOF) to the outer shelf (black shale: lower member of SF). The SSDS layers, exhibiting load casts, ball and pillow structures, indicate gravitational instability, while syn-sedimentary faults and insitu breccia are the results of brittle deformation. The dominance of storms in depositional sites often argues for a possible triggering agent for SSDS. Therefore, it was necessary to distinguish between seismic vs. aseismic triggering agents. The lateral continuity, vertical repetition, confinement of SSDS at the top part of FOF and sharp change of facies assemblage indicate seismicity-induced syn-sediment deformation, i.e. seismite. The transition from middle shelf to outer shelf at the onset of seismite indicates that seismic impact possibly caused the rapid subsidence, resulting in the palaeogeographic shift. The rapid transgression is recorded as carbonate-shale repository to anoxic black shale. This study highlights the importance of sedimentological analysis to distinguish the seismite and its implications on palaeogeographic evolution and sedimentary architecture.

1. Introduction

Soft-sediment deformation structures (SSDS), typically form during or shortly after sedimentation, but prior to lithification, are observed in various sedimentary environments from mountain to deep sea (Sims, 1973, 1975; Quia et al. 1994; Sarkar et al. 1995; Owen, 1996; Owen et al. 2011; Owen and Moretti, 2011; He et al. 2014; Sarkar et al. 2014; Laborde-Casadaban et al. 2021). The primary processes for SSDS formation, liquefaction and fluidization, governs by various factors, including deformation mechanisms, driving forces, and triggering agents (Owen et al. 2011). Liquefaction and fluidization processes are primarily induced by reverse density or gravitational instability (Owen, 1987; Quia et al. 1994; Moretti et al. (2016). Several significant research in deep-time sediment sequence relates the SSDS with ancient earthquake (seismite; Seilacher, 1969). The correlation of SSDS with earthquake magnitude and its relation with maximum distance of liquefaction from earthquake epicentre provide a better understanding of tectonics activity (Silva et al. 1997; Vanneste et al. 1999; Rodríguez-Pascua et al. 2000; Greb and Archer, 2007; Salomon et al. 2018; Morsilli et al. 2020). Recent investigations have revealed that the formation of SSDS can also be triggered by aseismic forces such as storm waves, tidal shearing, rapid sedimentation and overloading (Quai et al. 1994; Moretti and Sabato, 2007; Owen et al. 2011; Van Loon and Dechan, 2013; Van Loon and Pisarska-Jamroży, 2014; Jamil et al. 2021). Studies exploring the relationship between seismic and aseismic triggers of SSDS suggest that neither the deformation structures nor their characteristics can uniquely identify the triggering agents (Owen et al. 2011). The researchers engaged in palaeo-seismicity study propose that seismic deformed beds may exhibit lateral persistence, vertical repetition and change of SSDS morphology in lateral continuity (Seth et al. 1990; Montenat et al. 2007; VanLoon, 2009; VanLoon and Pisarska-Jamroży, 2014; Owen et al. 2011; Quai et al. 2013; Zhong et al. 2022). However, a number of researchers records these characteristics of SSDS beds in storm- and tide-dominated environments (Alfaro et al. 2002; Owen et al. 2011; Shanmugam,